Electrical heterogeneity in the heart: physiological, pharmacological and clinical implications

Charles Antzelevitch, Robert Dumaine

10.1002/cphy.cp020117


Originally published: 2002
Published online: January 2011

Full Article on Wiley Online Library

Abstract

The sections in this article are:
1. Action Potential and Ionic Distinctions
1.1 Methodological Considerations in the Assessment of Electrical Heterogeneity
2. Pharmacological Distinctions
2.1 Epicardium versus Endocardium
2.2 M-cells versus Epicardium and Endocardium
2.3 M-Cells versus Purkinje Cells
3. Molecular Distinctions
3.1 Potassium Channels
3.2 Sodium Channels
3.3 Gap Junctions
3.4 Chloride Conductances
3.5 Calcium Channels
3.6 Pumps and Exchangers
4. Simulation of Action Potential Heterogeneity
5. Developmental Aspects
6. Physiological and Clinical Implications
6.1 Transmural Distribution of Ito and the J Wave
6.2 Phase 2 Re-entry as a Mechanism of Extrasystolic Activity
6.3 Phase 2 Re-entry as a Trigger for VT/VF: The Brugada Syndrome
6.4 Early Repolarization Syndrome
6.5 Ischemia
6.6 Role of Transmural Heterogeneity in Inception of the Electrocardiographic T Wave
6.7 Role of Transmural Heterogeneity in Inception of the U Wave
6.8 Role of Transmural Heterogeneity in the Long QT Syndrome
6.9 Torsade de Pointes
6.10 Pharmacological Therapy for LQTS: Reducing Transmural Dispersion of Repolarization
7. Summary

Treat the heterogeneity of the ABB of CSF as a sign of thermodynamic imbalance of the living system, the author seems a relationship between the results of examination of the investigated system, its thermodynamic state systematisation, probability, and informative function. The presented propositions are supported, in the opinion of the author, by results of investigations of ABB in CSF in 227 cases of cranio-cerebral trauma, vascular diseases and tumors of the brain. Authors: R Mrówka.